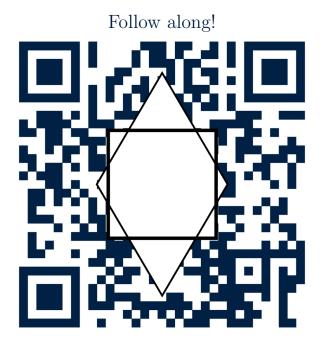
Usuba's extendible and resurrection supervised by W. Hugh Woodin

Wojciech Aleksander Wołoszyn

Mathematical Institute University of Oxford

[☞]St Hilda's College Oxford

IMS Graduate Summer School in Logic 7th July 2022



Let $\Diamond \varphi$ mean that φ is *forceable*, that is true in some forcing extension. And let \Box be an operator dual to \Diamond , which is to say $\Box \varphi$ holds just in case $\neg \varphi$ is not forceable.

Let $\Diamond \varphi$ mean that φ is *forceable*, that is true in some forcing extension. And let \Box be an operator dual to \Diamond , which is to say $\Box \varphi$ holds just in case $\neg \varphi$ is not forceable.

The resurrection axiom with real parameters $\mathrm{RA}(\mathbb{R})$ is the assertion

$$V\models\Box\left(\varphi(r)\rightarrow\Box\diamondsuit\varphi(r)\right).$$

Let $\Diamond \varphi$ mean that φ is *forceable*, that is true in some forcing extension. And let \Box be an operator dual to \Diamond , which is to say $\Box \varphi$ holds just in case $\neg \varphi$ is not forceable.

The resurrection axiom with real parameters $\mathrm{RA}(\mathbb{R})$ is the assertion

$$V \models \Box \left(\varphi(r) \to \Box \diamondsuit \varphi(r) \right).$$

For a class of assertions Γ , the Γ -resurrection axiom with real parameters $\operatorname{RA}_{\Gamma}(\mathbb{R})$ is the resurrection axiom with real parameters qualified to formulas $\varphi(x)$ from the class Γ .

Theorem (Woodin)

If there is a proper class of Woodin cardinals, then the Σ_2 -resurrection axiom with real parameters $RA_{\Sigma_2}(\mathbb{R})$ holds.

Theorem (Woodin)

If there is a proper class of Woodin cardinals, then the Σ_2 -resurrection axiom with real parameters $\operatorname{RA}_{\Sigma_2}(\mathbb{R})$ holds.

Observation

Suppose there is one I0 cardinal λ and a proper class of Woodin cardinals. We can collapse λ , so there is only a proper class of Woodin cardinals and no I0 cardinals. But then we can resurrect the existence of I0 in any further generic extension.

Suppose M is a transitive inner model of ZFC. We say that M is a ground just in case there is a poset $\mathbb{P} \in M$ and an (M, \mathbb{P}) -generic $G \subseteq \mathbb{P}$ such that M[G] = V. The mantle is the intersection of all grounds of V. Usuba proved that the mantle is a model of ZFC.

Suppose M is a transitive inner model of ZFC. We say that M is a ground just in case there is a poset $\mathbb{P} \in M$ and an (M, \mathbb{P}) -generic $G \subseteq \mathbb{P}$ such that M[G] = V. The mantle is the intersection of all grounds of V. Usuba proved that the mantle is a model of ZFC.

Theorem (Usuba)

If there is an extendible cardinal, then the mantle is a ground.

Suppose M is a transitive inner model of ZFC. We say that M is a ground just in case there is a poset $\mathbb{P} \in M$ and an (M, \mathbb{P}) -generic $G \subseteq \mathbb{P}$ such that M[G] = V. The mantle is the intersection of all grounds of V. Usuba proved that the mantle is a model of ZFC.

Theorem (Usuba)

If there is an extendible cardinal, then the mantle is a ground.

Theorem (Goldberg)

It is consistent that Usuba's theorem fails in V_{κ} where κ is the least extendible cardinal.

If the mantle is a ground, then the resurrection axiom with real parameters $RA(\mathbb{R})$ fails.

If the mantle is a ground, then the resurrection axiom with real parameters $RA(\mathbb{R})$ fails.

Corollary

If there is an extendible cardinal, then the resurrection axiom with real parameters $RA(\mathbb{R})$ fails.

If the mantle is a ground, then the resurrection axiom with real parameters $RA(\mathbb{R})$ fails.

Corollary

If there is an extendible cardinal, then the resurrection axiom with real parameters $RA(\mathbb{R})$ fails.

But Woodin announced that the following is true.

If the mantle is a ground, then the resurrection axiom with real parameters $RA(\mathbb{R})$ fails.

Corollary

If there is an extendible cardinal, then the resurrection axiom with real parameters $RA(\mathbb{R})$ fails.

But Woodin announced that the following is true.

Theorem (Woodin)

If $(ZF + AD_{\mathbb{R}} + \Theta \text{ is regular})$ is consistent, then so is $ZFC + RA(\mathbb{R})$, where Θ is the least non-zero ordinal such that there is no surjection from the reals onto it.

The goal of the project:

The goal of the project:

 show that the tension between large cardinals and resurrection is about the complexity strength as opposed to the consistency strength, and

The goal of the project:

- ▶ show that the tension between large cardinals and resurrection is about the complexity strength as opposed to the consistency strength, and
- find an optimal stage in the complexity hierarchy where resurrection becomes inconsistent with the existence of large cardinals.

The goal of the project:

- show that the tension between large cardinals and resurrection is about the complexity strength as opposed to the consistency strength, and
- ▶ find an optimal stage in the complexity hierarchy where resurrection becomes inconsistent with the existence of large cardinals.

As a preview, let me briefly discuss the following theorem.

The goal of the project:

- ► show that the tension between large cardinals and resurrection is about the complexity strength as opposed to the consistency strength, and
- ▶ find an optimal stage in the complexity hierarchy where resurrection becomes inconsistent with the existence of large cardinals.

As a preview, let me briefly discuss the following theorem.

Theorem

Suppose the mantle \mathbb{M} is a ground. Then the Π_3 -resurrection axiom with real parameters $\operatorname{RA}_{\Pi_3}(\mathbb{R})$ fails.

Proof sketch.

• For $V_{\gamma} \prec_{\Sigma_2} V$, we get that $\mathbb{M} \cap V_{\gamma}$ is the mantle of V_{γ} .

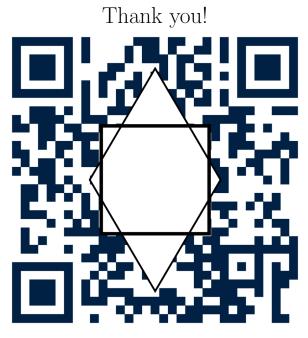
- For $V_{\gamma} \prec_{\Sigma_2} V$, we get that $\mathbb{M} \cap V_{\gamma}$ is the mantle of V_{γ} .
- Take a large enough cardinal λ and force with $\operatorname{Coll}(\omega, \lambda)$.

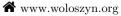
- ▶ For $V_{\gamma} \prec_{\Sigma_2} V$, we get that $\mathbb{M} \cap V_{\gamma}$ is the mantle of V_{γ} .
- Take a large enough cardinal λ and force with $\operatorname{Coll}(\omega, \lambda)$.
- In the generic extension, say V[H], the mantle is still a ground but ω_1 is now the successor of the mantle.

- For $V_{\gamma} \prec_{\Sigma_2} V$, we get that $\mathbb{M} \cap V_{\gamma}$ is the mantle of V_{γ} .
- Take a large enough cardinal λ and force with $\operatorname{Coll}(\omega, \lambda)$.
- In the generic extension, say V[H], the mantle is still a ground but ω_1 is now the successor of the mantle.
- ► Take $\gamma > \lambda$ with $V_{\gamma} \prec_{\Sigma_2} V$. The mantle of $V[H]_{\gamma}$ is the real mantle— $\mathbb{M}^{V[H]_{\gamma}} = \mathbb{M} \cap V[H]_{\gamma}$.

- ▶ For $V_{\gamma} \prec_{\Sigma_2} V$, we get that $\mathbb{M} \cap V_{\gamma}$ is the mantle of V_{γ} .
- Take a large enough cardinal λ and force with $\operatorname{Coll}(\omega, \lambda)$.
- In the generic extension, say V[H], the mantle is still a ground but ω_1 is now the successor of the mantle.
- ► Take $\gamma > \lambda$ with $V_{\gamma} \prec_{\Sigma_2} V$. The mantle of $V[H]_{\gamma}$ is the real mantle— $\mathbb{M}^{V[H]_{\gamma}} = \mathbb{M} \cap V[H]_{\gamma}$.
- Let φ say that for any sufficiently large α with $V_{\alpha} \prec_{\Sigma_2} V$, ω_1 is the least cardinal of the mantle that is larger than the real coding λ .

- ▶ For $V_{\gamma} \prec_{\Sigma_2} V$, we get that $\mathbb{M} \cap V_{\gamma}$ is the mantle of V_{γ} .
- Take a large enough cardinal λ and force with $\operatorname{Coll}(\omega, \lambda)$.
- In the generic extension, say V[H], the mantle is still a ground but ω_1 is now the successor of the mantle.
- ► Take $\gamma > \lambda$ with $V_{\gamma} \prec_{\Sigma_2} V$. The mantle of $V[H]_{\gamma}$ is the real mantle— $\mathbb{M}^{V[H]_{\gamma}} = \mathbb{M} \cap V[H]_{\gamma}$.
- Let φ say that for any sufficiently large α with $V_{\alpha} \prec_{\Sigma_2} V$, ω_1 is the least cardinal of the mantle that is larger than the real coding λ .
- ▶ Thus, one can force the failure of φ but cannot resurrect it.





References

[FHR15]	Gunter Fuchs, Joel David Hamkins, and Jonas Reitz. "Set-theoretic geology". In: Annals of Pure and Applied Logic 166.4 (2015), pp. 464-501. ISSN: 0168-0072. DOI: 10.1016/j.apal.2014.11.004. arXiv: 1107.4776 [math.LO]. URL: http://jdh.hamkins.org/set-theoreticgeology.
[Gol21]	Gabriel Goldberg. <i>Usuba's extendible cardinal</i> . 2021. URL: https://arxiv.org/abs/2108.06903.
[Lar04]	Paul B Larson. The stationary tower : notes on a course given by W. Hugh Woodin. eng. University lecture series (Providence, R.I.); 32. Providence, R.I.: American Mathematical Society, 2004. ISBN: 9780821836040.
[Usu19]	Toshimichi Usuba. "Extendible cardinals and the mantle". In: Archive for Mathematical Logic 58 (February 2019). DOI: 10.1007/s00153-018-0625-4.
[Woo21]	W. Hugh Woodin. Personal communication. June 2021.

