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Maximality principle 3

The Maximality principle was introduced by Stavi and
Väänänen, and independently Hamkins. It is a streamlined
axiom scheme in line with the following slogan.

“Anything forceable and not subsequently unforceable is
true.”

Hamkins observed a particularly natural expression of it in
modal logic. Having interpreted the modal operator as
forceable, that is “true in some forcing extension,” and as
necessary—“true in all forcing extensions“—it says that

φ → φ,

so anything forceably necessary is already true.
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Some examples and non-examples 4

Example

V ̸= L is forceably necessary. If V = L, we can easily change
that by a non-trivial forcing. Once V ̸= L, it is impossible to
change that by forcing.

Example

CH is not forcibly necessary. Rather, it is a switch, since both
CH and ¬CH are necessarily forceable.

Example

ωL
1 = ω is forceably necessary. Because L is a set

forcing-invariant definable transitive class.

Example

“S ⊆ ω1 is non-stationary” is forceably necessary, because we
can always shoot a club through its complement.
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Resurrection principle 5

By contrapositive, the maximality principle might as well be
seen as the resurrection principle. It says:

“Anything that is true is necessarily forceable.”

I shall adopt the resurrection perspective for my purposes. In
modal language:

RP φ → φ.

Example

Either CH or ¬CH realizes an instance of the resurrection
principle.
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Lightface and boldface variant 6

As standard in set theory, we distinguish the boldface and
lightface versions of RP.

The lightface variant talks about statements in the language of
set theory, with no parameters allowed.

The boldface variant, which we denote by RP∼ , talks about
statements in the language of set theory with arbitrary real
parameters (but no other parameters are allowed).

Observation
With real parameters in hand, one can refer to any hereditarily
countable set. Specifically, a real x HC-codes y ∈ HC if and only
if (ω, { (n,m) ∈ ω × ω | x(2n3m) = 0 } is isomorphic to
(TC({y}),∈).
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The necessary boldface variant 7

The necessary boldface variant asserts that the full scheme
holds in every forcing extension V P, taking into account new
real parameters.

RP∼ RP∼ holds in every forcing extension V P

Observation (Hamkins)

Consider any cardinal κ and its successor, in L and V . Let g be

a V -generic real for Coll(ω, κ). By RP∼ , “ω
L[g]
1 is countable” is

true in V [g]. Ultimately,

(κ+)L = ω
L[g]
1 < ω

V [g]
1 = κ+.

In particular, 0# exists.
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Qualified variants 8

Next, we consider a variant qualified to a class of formulas. For
instance, RP∼ Σ2 is the necessary boldface resurrection principle
for Σ2-assertions with real parameters.

A subtle point is that full resurrections— RP∼ , RP∼ , and
RP—are taken as schemes of assertions, but RP∼ Σ2 is a single
axiom, since we have a universal Σ2 truth predicate, and can
express it as one statement.

This is the sense used in the theorem below.

Theorem (Woodin)

If there is a proper class of Woodin cardinals, then RP∼ Σ2

holds.

A surprising corollary of Woodin’s result is that (the existence
of) I0 is resurrectable.
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Set-theoretic geology 9

Definition
If M ⊆ N are models of set theory, then M is a ground of N , if
N is a forcing extension of M by some set forcing. That is,
N = M [G] for some M -generic filter G ⊂ P in M .

Definition
The mantle M is the intersection of all grounds.

Theorem (Usuba)

M |= ZFC.

The mantle is a transitive, definable, and set forcing invariant.
It is independent of ZFC whether the mantle is a ground or not.
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Ground Definability Theorem 10

The following remarkable result was proven independently by
Laver, Hamkins, and Woodin.

The Ground Definability Theorem

Suppose M is a ground of V and M [G] = V for some P ∈ M
and (M,P)-generic G. Then, M is Σ2-definable in V .

The Bedrock Axiom BA states that the mantle is a ground.

Corollary

If BA holds, then the mantle is Σ2-definable in V .
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A cardinal κ is extendible if for every ordinal λ, there is an
ordinal γ > λ and an elementary embedding j : Vλ → Vγ with a
critical point equal to κ, which is to say that for any x ∈ Vλ, the
cardinality of x is invariant under j just in case its less than κ.

Theorem (Usuba)

If there is an extendible cardinal, then BA holds.

Theorem (Goldberg)

It is consistent that Usuba’s theorem fails in Vκ, where κ is the
least extendible cardinal.
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The failure of resurrection 12

Theorem
If there is an extendible cardinal, then RP∼ Σ3 fails.

Proof sketch.

▶ By Usuba’s theorem, there is a poset P ∈ M and an
(M,P)-generic G such that M [G] = V .

▶ M must be correct about successor cardinals above |P |.
▶ By the Ground Definability Theorem, M is Σ2-definable in

V .

▶ Take a sufficiently large λ, so that (λ+)M = λ+.

▶ Let g be a V -generic real for Coll(ω, λ+).

▶ Take any strong limit γ > λ with Vγ ≺Σ2 V .
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The failure of resurrection 13

▶ Vγ thinks that M ∩ Vγ is a ground. So by Σ2-elementarity,
M ∩ Vγ = MVγ .

▶ In the generic extension, the mantle is still the real mantle,
so MV [g]γ = M ∩ V [g]γ .

▶ But then (λ+)M ̸= (λ+)V [g].

▶ So the assertion expressing that there is a γ > λ such that
Vγ ≺Σ2 V and Vγ |= (λ+)M = λ+ gives a failure of RP∼ Σ3 .

Observation
The refuting assertion is provably equivalent to the assertion
that for all γ > λ, Vγ ≺Σ2 V implies that Vγ |= (λ+)M = λ+.

Corollary

If there is an extendible cardinal, then RP∼ Π3 fails.
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We know that

▶ RP∼ Σ2 is true, and

▶ RP∼ Σ3 and RP∼ Π3 are false.

What is left is the case of RP∼ Π2 .

Let me end with the following conjecture.

Conjecture

The full necessary boldface resurrection principle RP∼ is
consistent with a proper class of I0 cardinals.

This, RP∼ Π2 , and more, is a work in progress.
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