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Abstract. The article offers an accessible exposition of the Grze-
gorczyk axiom and provides a new characterization of the modal
logic Grz.2, establishing that it is complete for the set of finite
Boolean algebras. Thereby, it enhances the utility of the control
statement technique of establishing upper bounds on the modal
validities of a potentialist system [HL08; HL19; HW20].

1. Introduction

Despite its intimidating appearance, the Grzegorczyk axiom has
played a central role in modal logic and has been extensively studied
by logicians [Kra99]. In mathematical logic, it has appeared in the
context of set theory [Sol76] and, more recently, in the subject of model
theory and category theory [HW20; Wo l]. It was discovered to be the
missing principle needed to answer a longstanding unresolved question
in control statement theory [Wo l], cf. [Pas19] and [Wo l22]. The axiom
is stated as follows.

Grz ( (p→ p) → p) → p.

It has been long known that modal logic Grz.2—the smallest normal
modal logic containing the axioms Grz and .2—is characterized by
directed partial orders [Kra99]. By employing the methods of [Fin74;
Fin85], one can prove that finite directed partial orders suffice. Drawing
upon the methods presented in [HL08], I give a further refinement and
show that finite Boolean algebras are enough.

Main Theorem. The modal logic Grz.2 is characterized by finite
Boolean algebras. That is, a propositional modal assertion φ is provable
in Grz.2 if and only if φ is valid in every finite Boolean algebra.

It is immediate to show the forward direction of the main theorem.
Every assertion provable in Grz.2 must be valid in every finite directed
partial order, hence every finite Boolean algebra in particular. It
therefore suffices to show that Grz.2 is complete with respect to the set
of all finite Boolean algebras. More specifically, we shall show that if
a propositional modal assertion φ is not valid in some finite Boolean
algebra B, then φ is not provable in the modal logic Grz.2.
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2. Demystifying the Grzegorczyk axiom

Let me start by elucidating the meaning of the Grzegorczyk axiom
to the reader. It is convenient to rewrite it in the equivalent form
p ∨ (¬p ∧ (p → p)), which one obtains by simply expanding the
implications to disjuncts and applying de Morgan’s laws for modal logic.
Following [Wo l], we call p penultimate and denote it by penultimate(p),
when ¬p ∧ (p → p). Penultimacy of p means that p is false but
necessarily if it ever becomes true, it remains necessarily true. We are
now poised to express the axiom in a form that is easy to digest:

Grz p ∨ penultimate(p).

Because of the directedness, the accessibility relation in a frame that
validates the modal logic Grz.2 is antiwellfounded [Wo l]. As further
worlds are accessed, the truth-value of any propositional variable will
eventually stabilize, and no matter how we proceed, there will always
be a maximal world that was wrong about the ultimate truth-value of
the variable. Formally, Grz.2 proves that penultimate(p) implies p.
In this setting, therefore each propositional variable is truly possibly
penultimate. It is worth emphasizing, however, that it is not true in
general. There exist frames that validate the modal logic Grz and yet
have a node for which p ∨ ¬p is satisfiable. See figure below for
an example of a frame a world based on which can have the value of a
propositional variable potentially flip indefinitely, never stabilizing and
without ever attaining its ultimate truth-value.

u−2 u−1 u0 u1 u2

· · · w−2 w−1 w0 w1 w2 · · ·

Figure 1. A non-antiwellfounded frame on which Grz
is valid.

The frames validating Grz have no proper clusters, that is there are
no distinct mutually accessible worlds. Logics with such a property
are often referred to as of fatness 1. It is easy to misconstrue this,
however, and this mistake occurs in the literature [Kra99], that Grz is
characterized by reflexive frames of fatness 1. The subtlety lies in the
fact that Grz is characterized by reflexive finite frames of fatness 1. In
the infinite case, however, it is not true. Figure below gives an obvious
counterexample—a reflexive frame of fatness 1 where .2 is valid but Grz
is not.
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w0 w1 w2 · · · wω

Figure 2. A non-antiwellfounded frame of fatness 1 on
which .2 is valid but Grz is not.

3. Characterization by finite lattices

A labeling of a frame F for a world u0 in a Kripke model N validating
S4 is an assignment to each node w in F an assertion Φw in the
propositional modal language, such that:

(1) (N, u0) |= Φw0 .
(2) If (N, u) |= Φw, then (N, u) |= Φw′ if and only if w ≤F w

′.
(3) For every u in N , there is exactly one Φw such that (N, u) |= Φw.

These properties are expressible in the language of propositional modal
logic by the Jankov-Fine formula for F :( ∨

w∈F

pw ∧
∧
w ̸=v

(pw → ¬pv) ∧
∧
w≤v

(pw → pv) ∧
∧
w>v

(pw → ¬ pv)
)
.

Note that the labeling of a frame can be naturally carried out
for statements in any language, not necessarily just propositional
modal assertions, as long as we have a coherent notion of modal
truth for that language. This has been applied extensively in works
on set-theoretic, model-theoretic, and category-theoretic potential-
ism [Wo l], [HW20], [HL19], and [HLL15]. The proof of the following
lemma can be found in [HLL15], where the frame labeling was coined.

Labeling Lemma. Suppose that w 7→ Φw is a labeling of a finite frame
F with an initial node w0 for a world u0 in a Kripke model N validating
S4. Then for any Kripke model M based on F there is an assignment
of the propositional variables to modal assertions p 7→ ψp such that for
any modal assertion φ(p0, . . . , pk),

(M,w0) |= φ(p0, . . . , pk) if and only if (N, u0) |= φ(ψp0 , . . . , ψpk).

Let me now introduce the reader to the control statement theory.
Here, one uses various kinds of control statements—buttons, switches,
dials, ratchets, or railyards—to establish upper bounds on the class of
modal validities. The methodology of this theory was introduced in
series of articles [HL08; HLL15; HL19; HW20].

For the purposes of this article, we only need one kind of a control
statement. A button is an assertion that is necessarily possibly necessary.
Buttons bi, for i ∈ I, are independent at an initial world u0 of a Kripke
model N if none of the buttons is necessary at u0 and necessarily,
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any of the buttons can be pushed without affecting the other buttons.
Formally, for an A ⊆ I, we define ΘA =

∧
i∈A bi ∧

∧
i ̸∈A ¬ bi. This

asserts that the button pattern is specified exactly by A. The buttons
are independent at u0 if

(N, u0) |=
∧
i∈I

¬ bi ∧
∧
A⊆I

(
ΘA →

∧
A+⊇A

ΘA+

)
.

The buttons are all unpushed at first, at u0, and necessarily, any larger
button pattern is realizable.

Lemma 1. Suppose F is a finite lattice with an initial node w0 and L
is a modal logic containing S4. If N is a Kripke model and u0 a world
in it that satisfies L and admits at least |F |-many independent buttons,
then there exists a labeling of F for u0.

Proof. We base our argument on [HL08, Lemma 7.3]. Consider the
correspondence w 7→ bw between the nodes of F and the independent
buttons at u0. For a S ⊆ F , define bS =

(∧
s∈S bs

)
∧
(∧

s/∈S ¬ bs
)
,

which expresses that only the buttons in S are pushed. For any w ∈ F ,
let

Φw =
∨

{ bS | w =
∨

S }.
We now show that w 7→ Φw is a labeling of F for u0. For every

u ≥F u0, there exists an S such that exactly the buttons bs for s ∈ S are
pushed at u. So (N, u) |= Φw if and only if w = supS. And so, precisely
one Φw can hold for each u ≥F u0. In particular, (N, u0) |= Φw0 , where
no buttons are pushed yet. The first two conditions of the definition of
a labeling are therefore satisfied.

For the forward direction of the first condition, suppose (N, u) |=
Φw′ . There exists u′ |= Φw′ that is accessible from u. Therefore, there

must be a set S ′ such that w′ =
∨
{ bs | s ∈ S ′ }. The buttons pushed

at u remain so in all accessible worlds, hence S ⊆ S ′. As a result,
w =

∨
S ≤

∨
S ′ = w′.

Conversely, suppose that u ≥F u0 is such that (N, u) |= Φw. Let
S = { s ∈ F | (N, u) |= bs }. In other words, S is the set of indices of
buttons that are pushed at u. Note that w = supS. Consider w′ ≥F w.
Pushing only bw′ at u means accessing some u′ where precisely the
buttons indexed by the set S ∪ {w′} are pushed. But supS = w ≤F w

′,
and so w′ = sup(S ∪ {w′}). That means (N, u′) |= Φw′ , hence (N, u) |=

Φw′ □

A baled tree is a partially ordered set T that has the greatest element
t ∈ T , with the property that when this element is removed, the
remaining set T \ t is a tree. The idea behind a baled tree is to imagine
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an upward-growing tree with its topmost part gathered together and
tied into a bale.

Lemma 2. A modal assertion that is not provable in the modal logic
Grz.2 has to fail in some Kripke model whose frame is a finite baled
tree, and hence a finite lattice.

Proof. We follow the ideas developed in [HL08, Lemma 6.5]. The logic
Grz.2 is characterized by finite directed partial orders. Therefore, if
Grz.2 ̸⊢ φ, then there is a Kripke model N based on a directed partially
ordered frame F , together with a world u0 in it such that (N, u0) ̸|= φ.
We will construct a Kripke model M that is a finite baled tree and
bisimilar to N . We use the technique of partial tree unraveling, cf. the
proof of [HL08, Lemma 6.5].

We say that t is a path from u0 to u in F if and only if it is a
maximal subset of the interval [u0, u] with respect to ≤F . Let T =
{ t | t is a path from u0 to u } endowed with a partial order ≤T where
t0 ≤T t1 if and only if t1 is an end-extension of t0, so that T forms a
tree. Let B be the partial tree unraveling of F . Specifically, B is such
that B contains the greatest element g of F and all pairs ⟨u, t⟩ where t
is a path from u0 to u, with u ≤ g, and ⟨u, t⟩ ≤B ⟨u′, t′⟩ if and only if
u ≤F u

′ and t ≤T t
′. Observe that B forms a baled tree, with g being

its greatest element.
We now construct the desired Kripke model M based on B. Namely,

we copy the values of propositional variables from each world u ∈ N to
all its copies ⟨u, t⟩ of itself in F . Each world in M accesses precisely
the worlds that are copies of the worlds it accesses in N . Therefore,
M and N are bisimilar via the defined correspondence. As a result,
every world in M has exactly the same modal truths as its copies in
N . Consequently, φ fails in M at a world that is a copy of w0. Thus,
φ fails in a Kripke model with a frame that is a finite baled tree, and
consequently, a lattice. □

The following result demonstrates that arbitrarily finitely many in-
dependent buttons suffice to bound the propositional modal validities
by Grz.2. I improve this result to the context of potentialist systems
or Kripke categories in [Wo l], answering a longstanding open question
concerning buttons and switches, as discussed in [Pas19], cf. [Wo l22].

Theorem 3. Suppose u0 is an initial world in a Kripke model N
that admits arbitrarily finitely many independent buttons. Then, the
propositional modal assertions valid at u0 are contained in the modal
logic Grz.2.
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Proof. Parts of the proof are reminiscent to [HL08, Lemma 9]. Suppose
Grz.2 ̸⊢ φ. By lemma 2, there is a Kripke model M with an initial world
w0 based on a frame that is a finite lattice such that (M,w0) ̸|= φ. By
the labeling lemma and lemma 1, we can assign propositional variables
to modal assertions p 7→ ψp so that

(M,w0) |= φ(p0, . . . , pn) if and only if (N, u0) |= φ(ψp0 , . . . , ψpk).

But (M,w0) |= ¬φ, so (N, u0) |= ¬φ(ψp0 , . . . , ψpk). And so, φ cannot
be valid at u0. As φ was chosen arbitrarily, any modal assertion not
provable in Grz.2 cannot be valid at u0. □

4. Characterization by finite Boolean algebras

Lemma 4. For any n < ω, there is a Kripke model N with an initial
world u0 whose frame is a finite Boolean algebra, such that u0 admits
n-many independent buttons.

Proof. We proceed like in [HL08, Lemma 8]. Take the frame to be the
powerset of n ordered by inclusion. This is a finite Boolean algebra,
whose nodes are subsets B of n. Now let N be a Kripke model based
on that frame where bi is true just in case i ∈ B. Clearly, every bi is a
button, and—since whatever the button-pattern B any world has, any
larger pattern B′ ⊇ B is possible—they are all independent at u0. □

Recall that a modal logic is sound with respect to a class of frames if
it is valid in each frame from that class. The following is an analogue
of [HL08, Lemma 9] but with no switches.

Lemma 5. A class of frames characterizes the modal logic Grz.2 if
and only if Grz.2 is sound with respect to that class of frames and there
are Kripke models based on frames from the class whose initial worlds
admit arbitrarily finitely many independent buttons.

Proof. The forward implication is immediate by lemma 4, showing
that Grz.2 is consistent with the existence of arbitrarily finitely many
independent buttons. The converse follows from theorem 3. □

Let me conclude the paper with a theorem that summarizes the frame
characterizations for the modal logic Grz.2.

Theorem 6. The following sets of frames characterize the modal logic
Grz.2.

(1) Finite directed partial orders.
(2) Finite latices.
(3) Finite baled trees.
(4) Finite Boolean algebras.
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Proof. Statement (1) is clear by the original characterization of the
logic. Lemma 2 proves that everything that is not provable in Grz.2
fails at a world in a Kripke model based on a finite baled tree (hence
a finite lattice and a finite partial order). Lemma 4 shows that the
set of finite Boolean algebras have Kripke models with initial worlds
admitting arbitrarily finitely many independent buttons. And so, by
lemma 5 this class characterizes the modal logic Grz.2. □
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